
last update 7-17-17

LL_USB_python Python sample app
for Linux – overview

Sample app “LL_USB_python” makes use of "libLL_USB30x.so" built and tested in Oracle VM VirtualBox,
within Win7, running ubuntu 14.04 LTS. Built with installed library lusb1.0 and library, pthread 1.1.
“libLL_USB30x.so” will need to be built and installed as per the instructions accompanying it in order for this
app to make use of it.

The library makes use of many of the functions mentioned in the documentation for our Windows DLL API
which can be found at our website. The link below provides the API as well as much more information that
further explains using the functions, and some information concerning interaction with the hardware. Below
is the link:

 lawsonlabs.com web link

The functions currently available can be found in the "main.h" header file distributed with the library source
code, many of which are recognized by the "EX_" preceding the rest of the function name. Other functions
within the library, not preceded by "EX_" which wrap, extend, and are called by those functions, can also be
called by themselves.

Sample app LL_USB_python makes use of only a handful of the functions available, in order to demonstrate
their usage in connecting to the device and performing some basic tasks. The app connects to the device,
reads/displays the voltage from the default channel 0, sets channel 6, and then reads/displays the voltage
again. Next the app sets DAC 0 to 3.5 volts and changes to channel 3. Please connect DAC 0 to channel 3
(analog out 1 to 4+ and GD to 4-). The app reads the voltage from that channel (should read approx. 3.5
volts). It then demonstrates how to get the “actual rate” the board will run at based on a requested rate,
since the board is not capable of always running at the precise rate one might request. It sets a temporary
rate variable to 1000Hz and then calls into the library to get what the "actual board rate" would be (approx.
1000.651466Hz) at that requested rate. Note that trying to set the rate, for example with a call to
EX_SendRate(...) with the rate that was returned by that call, could then set it to a different rate. That
returned rate should only be used within an app for timing within the app. Finally, the app does a single-
channel 100Hz scan on channel 3, displaying 25 voltages, then exits.

It makes use of the following function calls within the library:
 EX_ConnectOneDevice(...)
 EX_GetOneConversion(...)
 EX_SendChan(...)
 EX_SendDAC(...)
 EX_GetCalculatedRate(...)

the following is also used by this app but is not shown in the Windows DLL API at our website as it is
exclusive to our Linux library and is the function passed to the scan thread:
 doScan(...)

The device ID is hard-coded to 5206 at the top of the “main()” function call so that will need to be changed
to “your” device ID before running your Linux system.

The next page shows how it looks when run, which may require super user rights, “sudo ./LL_USB_python.”
Note that the single-channel scan data is for channel 3, which was the last channel selected, and DAC0 was
connected to it with it's output set to 3.5 volts. Also note that some of the output shown is being printed by
the library since AllowPrintf(...) has been called by the application to set a flag that enables that option.

C coded header file, “main.h” from the library, is included within the archive for reference to all variables and
functions available to the python developer from the libLL_USB30x.so library. It can be viewed in the default
linux/ubuntu text editor.

http://www.lawsonlabs.com/Download/Manuals-Drivers/Model_301_302/M30x_SP_X/Shared/ArchiveContents/_HTML_docs/FunctionUsage/FuncUse.htm
http://www.lawsonlabs.com/Download/Manuals-Drivers/Model_301_302/M30x_SP_X/Shared/ArchiveContents/_HTML_docs/FunctionUsage/FuncUse.htm#EX_GetCalculatedRate
http://www.lawsonlabs.com/Download/Manuals-Drivers/Model_301_302/M30x_SP_X/Shared/ArchiveContents/_HTML_docs/FunctionUsage/FuncUse.htm#EX_SendDAC
http://www.lawsonlabs.com/Download/Manuals-Drivers/Model_301_302/M30x_SP_X/Shared/ArchiveContents/_HTML_docs/FunctionUsage/FuncUse.htm#EX_SendChan
http://www.lawsonlabs.com/Download/Manuals-Drivers/Model_301_302/M30x_SP_X/Shared/ArchiveContents/_HTML_docs/FunctionUsage/FuncUse.htm#EX_GetOneConversion
http://www.lawsonlabs.com/Download/Manuals-Drivers/Model_301_302/M30x_SP_X/Shared/ArchiveContents/_HTML_docs/FunctionUsage/FuncUse.htm#EX_ConnectOneDevice

 signing on (may take a while) - WAIT . . .
 signed on

 getting a conversion - WAIT . . .
 got volts: -0.000012

 changing channel - WAIT . . .
 sendChan success, lastDigin: 0

 getting a conversion - WAIT . . .
 got volts: 4.999999

 setting DAC0 to 3.5 volts - WAIT . . .
 sendDAC success

 changing channel 3 (should be DAC0 volts) - WAIT . . .
 sendChan success, lastDigin: 0

 getting a conversion - WAIT . . .
 got volts: 3.510315

 checking 'actual rate' when 1000Hz is requested - WAIT . . .
 1000Hz would be: 1000.651466

 starting scan

 here comes the data
 getting scan data
 scan: 0 volts: 3.510501
 scan: 1 volts: 3.510427
 scan: 2 volts: 3.510458
 scan: 3 volts: 3.510668
 scan: 4 volts: 3.510732
 scan: 5 volts: 3.510554
 scan: 6 volts: 3.510596
 scan: 7 volts: 3.510728
 scan: 8 volts: 3.510654
 scan: 9 volts: 3.510392
 scan: 10 volts: 3.510401
 scan: 11 volts: 3.510525
 scan: 12 volts: 3.510537
 scan: 13 volts: 3.510496
 scan: 14 volts: 3.510472
 scan: 15 volts: 3.510501
 scan: 16 volts: 3.510501
 scan: 17 volts: 3.510599
 scan: 18 volts: 3.510549
 scan: 19 volts: 3.510644
 scan: 20 volts: 3.510746
 scan: 21 volts: 3.510732
 scan: 22 volts: 3.510563
 scan: 23 volts: 3.510654
 scan: 24 volts: 3.510838
 starting wait for end-scan codes echo
 end-scan codes: 0, 23, 3, 2, 1
 done scan

